金融商业算法建模:基于Python和SAS在线阅读
会员

金融商业算法建模:基于Python和SAS

赵仁乾 田建中 叶本华 常国珍
开会员,本书免费读 >

计算机网络数据库18.2万字

更新时间:2021-11-05 17:52:35 最新章节:附录 SAS EM节点说明

立即阅读
加书架
下载
听书

书籍简介

这是一本贯穿金融业务经营全流程,以业务为驱动的金融数据挖掘与建模著作,涵盖分析框架、模型算法、模型评估、模型监控、算法工程化等数据建模环节。本书的4位作者都是在金融领域有多年工作经验的大数据专家,不仅技术功底深厚、业务经验丰富,而且对金融行业从业者的需求痛点和图书市场的供给情况有深入了解。他们通过精心策划和写作,让本书内容独树一帜。本书针对决策类、识别类、优化分析类三大主题,独创九大模板:客户价值预测、营销响应预测、细分画像、交叉销售、申请反欺诈、违规行为识别、预测、运筹优化、流程挖掘,详细讲解了每个模板的算法原理、评估方法、优化方法和应用案例等,内容上极力做到准确、明晰、直观与实用。此外,本书还对数据科学项目中比较容易被忽视的内容做了补充,包括模型评估、模型监控、算法工程化,指导读者构建易读、高效、健壮的数据科学工程。本书坚持理论与实践相结合,通过图形、示例、公式帮助读者快速掌握算法与优化理论的同时,还打造了一套可轻松适配各种分析场景与需求的工具模板,力图帮助读者从理论快速跨越到实践。
品牌:机械工业出版社
上架时间:2021-10-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

赵仁乾 田建中 叶本华 常国珍
主页

最新上架

  • 会员
    本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预
    翟世臣 张良均主编计算机13.6万字
  • 会员
    《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员
    刘伟计算机0字
  • 会员
    本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。
    傅一行计算机13万字
  • 会员
    本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth
    王俊主编计算机12.3万字
  • 会员
    本书是一本介绍分布式数据库基础内容与应用的大数据专业类图书,力求培养读者对分布式数据库的应用技能。本书共11章,采用原理+代码实例+综合案例的编写形式,清晰明了地介绍分布式数据库的原理、基础应用、进阶应用及主流工具的使用方法、应用场景,以理实结合为编写要求,让读者能够轻松学习和掌握分布式数据库的内容。本书可以作为高等院校计算机、网络技术等相关专业的教材,也可以作为数据库相关工作的从业人员的参考用书
    闭应洲 许桂秋 刘军主编计算机14万字
  • 会员
    本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
    张平文 邱泽奇编著计算机14.5万字
  • 会员
    本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。
    袁昕编著计算机8.5万字
  • 会员
    本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云
    戴经国 何丰 王国滨 郭炳宇 姜善永计算机12.1万字
  • 会员
    本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。
    熊熙 张雪莲编著计算机10.9万字