![人工智能+机器人入门与实战在线阅读](https://wfqqreader-1252317822.image.myqcloud.com/cover/613/30915613/b_30915613.jpg)
会员
人工智能+机器人入门与实战
更新时间:2020-05-08 17:01:53 最新章节:附录 “试一试”环节参考程序
书籍简介
树莓派是一款基于ARM架构、Linux系统的极简计算机,既可以用于计算机编程教育,也可以作为机器人的控制核心。第一种运行于树莓派上的编程语言是Python,这是当前人工智能领域最为流行的编程语言。机器视觉是人工智能中重要的细分研究领域,OpenCV则是当前机器视觉领域主流的开源处理库,可以方便地用于计算机图像处理,并应用于面部识别、目标识别等具体问题。本书介绍在树莓派硬件上使用Python语言,借助OpenCV库编程,来实现具有机器视觉功能(识别和抓取特定颜色物体、识别人脸、识别特定人脸、进行面部跟踪)的智能机器人。《人工智能+机器人入门与实战》力求通过一系列不同层次的软硬件任务,由浅入深地讲解人工智能的概念,同时覆盖Linux系统操作、Python编程、机器人系统搭建等多方面的综合知识。在本书案例中使用的主要硬件载体是可在桌面上固定运转的双轴云台和三轴机械臂等,它们可以代表一类智能机器人的形态。本书遵循开源、分享的创客精神,所有的硬件材料和软件内容均可以从公共平台获取,读者在充分理解的基础上,不必局限于本书所列硬件,可自行获取类似设备完成项目。
品牌:人邮图书
上架时间:2020-05-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
陈宇航 侯俊萍 叶昶
同类热门书
最新上架
- 会员《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。全书共分为九章。第一章介绍AIGC技术的基本概念和发展历程;第二、三章介绍AIGC的基础技术栈和拓展技术栈;第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景;第六章列举了目前较为热门的AIGC技术应用;第七章描述了AIGC的上、中、下游产业链及未来前景计算机12.8万字
- 会员ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。计算机13.2万字
- 会员这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策计算机13.2万字
- 会员我们生活在一个由算法构筑的世界:这些基于数据的算法不仅掌控着社会的运转、筛选着我们的网络见闻,还构成了自动驾驶、智能家居、前沿医疗、智慧城市乃至元宇宙发展的根本。它们是人类步入智能化新纪元的关键驱动力。随着我们对数字技术的依赖日益加深,数学家和数据研究者得以透过它们窥探我们的日常生活。他们通过收集我们的购物记录、消费倾向、兴趣爱好和旅行路径等数据,试图解码我们的日常行为模式。但是,这些数据驱动的分计算机15.2万字
- 会员《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字
- 会员本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字
- 会员这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字